
Principal Component Analysis



Principle Component Analysis: A statistical technique used to 
examine the interrelations among a set of variables in order 
to identify the underlying structure of those variables. Also 
called factor analysis.

It is a non-parametric analysis and the answer is unique and 
independent of any hypothesis about data distribution. 

These two properties can be regarded as weaknesses as well as 
strengths.

Since the technique is non-parametric, no prior knowledge 
can be incorporated. 

PCA data reduction often incurs a loss of information.



The assumptions of PCA:

1. Linearity
• Assumes the data set to be linear combinations of 
the variables. 

2. The importance of mean and covariance
• There is no guarantee that the directions of maximum 

variance will contain good features for discrimination.

3. That large variances have important dynamics
• Assumes that components with larger variance 

correspond to interesting dynamics and lower ones 
correspond to noise.



Where regression determines a line of best fit to a data 
set, factor analysis determines several orthogonal lines
of best fit to the data set.

Orthogonal: meaning “at right angles”. Actually the lines
are perpendicular to each other in n-dimensional space.



n-Dimensional Space: the variable sample space. There are as 
many dimensions as there are variables, so in a data set with 4 
variables the sample space is 4-dimensional.







Components:  a linear transformation that chooses a variable 
system for the data set such that the greatest variance of the data 
set comes to lie on the first axis (then called the principal
component), the second greatest variance on the second axis, 
and so on ... 

Note that components are uncorrelated, since in the
sample space they are orthogonal to each other.

Orthogonal Non-orthogonal





Locations along each component (or eigenvector) are then 
associated with values across all variables. This association 
between the components and the original variables is called the 
component’s eigenvalue.

In multivariate (multiple variable) space, the correlation between 
the component and the original variables is called the component 
loadings.

Component loadings: analogous to correlation coefficients, 
squaring them give the amount of explained variation. Therefore 
the component loadings tell us how much of the variation in a 
variable is explained by the component.





If we use this technique on a data set with a large number of 
variables, we can compress the amount of explained variation to 
just a few components.

What follows is an example of Principal Component Analysis using 
canal town commodity production figures (percentage of total 
production) for 1845.





Towns

Columbia   

Middletown 

Harrisburg 

Newport    

Lewistown  

Hollidaysburg   

Johnstown  

Blairsville

Pittsburgh 

Dunnsburg  

Williamsport    

Northumberland  

Berwick    

Easton

New Hope   

Bristol    

Philadelphia    

Paoli 

Parkesburg 

Lancaster 

Variables

Corn

Wheat

Flour

Whiskey

Groceries

Dry Goods



Total  Variance Explained

2.533 42.211 42.211 2.533 42.211 42.211 1.887 31.452 31.452

1.565 26.084 68.295 1.565 26.084 68.295 1.880 31.328 62.780

1.504 25.073 93.368 1.504 25.073 93.368 1.835 30.587 93.368

.174 2.901 96.269

.119 1.988 98.257

.105 1.743 100.000

Component

1

2

3

4

5

6

Total % of  Variance Cumulat iv e % Total % of  Variance Cumulat iv e % Total % of  Variance Cumulat iv e %

Initial Eigenvalues Extraction Sums of  Squared Loadings Rotation Sums of  Squared Loadings

Extraction Method: Principal Component Analy sis.

In this case, 3 components contain 93.368% of the variation
of the 6 original variables. Note that there are as many 
components as original input variables.

Component 1 explains 42.211% of the variation, component 2 
explains 26.084%, and component 3 explains 25.073%. 

The remaining 3 components explain only 6.632%.



Cut-off point

A scree plot graphs the amount of variation explained by each component.



Rotated Component Matrixa

-.065 .936 .214

-.104 .952 -.057

.962 -.092 -.086

.963 -.074 -.092

-.126 -.097 .954

-.057 .275 .927

Corn

Wheat

Groceries

DryGoods

Flour

Whiskey

1 2 3

Component

Extraction Method: Principal Component Analy sis. 

Rotation Method:  Varimax with Kaiser Normalization.

Rotation converged in 4 iterations.a. 

Rotated Component Matrix (a)

Highest Component Loading
Component 1: Groceries and dry goods.
Component 2: Corn and wheat.
Component 3: Flour and whiskey.



Note how the variables that make up each component
fall close to each other in the 3-dimensional sample space.



What do these components mean (how do we interpret them)?

• Component 1 (groceries and dry goods) – these two items 
are highly processed and value added.

• Component 2 (corn and wheat) – these two items are not
processed (raw) and have no value added.

• Component 3 (flour and whiskey) – these two items are
moderately processed and value added.

It appears that the components are indicators of either
the amount of processing or value adding (or both).



The most challenging part of PCA is interpreting the 
components.

1. The higher the component loadings, the more important that 
variable is to the component.

2. Combinations of positive and negative loadings are interpreted 
as ‘mixed’.

3. The specific sign of the is not important.

4. ALWAYS use the ROTATED component matrix!!



Component score: the new variable value based on the 
observation’s component loading and the standardized value of the 
original variable, summed over all variables.

where Dij is the standardized value for observation i on variable j
and Ljk is the loading of variable j on component k.

Examining the component scores for each town may give some
clues as to the interpretation of the components.

 jkijik LDScore



Component Score Box Plot



Easton, Philadelphia, and
Northumberland are the
only towns that load highly
on a single component.



Scoring highly on a single component simply means that the
original variable values for these locations are overwhelmingly
explained by a single component.

In this case, it means that the variation among ALL of the 
variables for Philadelphia (for example) is more completely 
explained by a single component composed of groceries and 
dry goods.

Rotated Component Matrixa

-.065 .936 .214

-.104 .952 -.057

.962 -.092 -.086

.963 -.074 -.092

-.126 -.097 .954

-.057 .275 .927

Corn

Wheat

Groceries

DryGoods

Flour

Whiskey

1 2 3

Component

Extraction Method: Principal Component Analy sis. 

Rotation Method:  Varimax with Kaiser Normalization.

Rotation converged in 4 iterations.a. 



Town Component 1 Component 2 Component 3

Columbia        0.31989 -0.44216 -0.44369
Middletown      -0.37101 -0.24531 -0.47020
Harrisburg      -0.00974 -0.06105 0.32792

Newport         -0.38678 0.40935 -0.62996
Lewistown       -0.33132 1.27318 -0.52170

Hollidaysburg   -0.44018 -0.49770 -0.59722

Johnstown       -0.44188 -0.48447 -0.63736

Blairsville     -0.42552 -0.38759 -0.51107

Pittsburgh      -0.13834 -0.75021 1.05942

Dunnsburg -0.42728 0.03072 -0.73622
Williamsport    -0.28812 -0.47716 -0.62453
Northumberland  -0.00398 3.82169 0.09538

Berwick         -0.36503 -0.46398 -0.60501
Easton          -0.02349 -0.00587 3.28970

New Hope        -0.40354 -0.42291 -0.25891
Bristol         0.60267 -0.32311 -0.50086

Philadelphia    4.08309 -0.14799 -0.24733
Paoli           -0.41174 -0.35103 -0.38109

Parkesburg      -0.25890 0.05125 0.92910
Lancaster       -0.27880 -0.52566 1.46363

Town Component Scores

Philly is a ‘processed
goods ‘town.

Middletown is a ‘mixed’ 
town because it loads on 
all components equally.



Component 1: Processed Goods

The green town were producers of processed goods, while the 
red towns were consumers of those goods.



Component 2: Non-Processed Goods

The green town were producers of non-processed goods, while 
the red towns were consumers of those goods.



Component 3: Partially Processed Goods

The green town were producers of partially processed goods, 
while the red towns were consumers of those goods.



What information did PCA provide concerning the  goods
exported by the canal towns?

• The goods fell into recognizable categories (highly processed,
moderately processed, not processed).

• A small number of towns were responsible for exporting
most of these goods.

• The location of these towns relative to the goods they 
produced make sense.

• Industrial towns on the Columbia railroad exported
finished goods.

• Small farming towns on the canal exported produce.
• Midsize towns exported moderately processed

goods.



Without the use of Principal Component Analyses these associations 
would be difficult to determine.

Principal Component Analyses is also used to remove correlation 
among independent variables that are to be used in multivariate 
regression analysis.

Correlation Matrix

Corn Wheat Groceries DryGoods Flour Whiskey

Correlation

Corn 1.000 .812 -.163 -.160 .108 .450

Wheat .812 1.000 -.183 -.157 -.096 .198

Groceries -.163 -.183 1.000 .883 -.191 -.164

DryGoods -.160 -.157 .883 1.000 -.198 -.163

Flour .108 -.096 -.191 -.198 1.000 .806

Whiskey .450 .198 -.164 -.163 .806 1.000

Correlation

Dry Goods Groceries PCA 2 PCA 3

PCA 1 0.963 0.962 0.000 0.000

Note that PCA1 is highly correlated 
to dry goods and groceries, but 
uncorrelated to PCA2 and PCA3.


